PSU-USGA Research Committee Meeting University Park, PA (September 13, 2000)

Using Cubical Triaxial Testing for Determining the Bulk Mechanical Behavior of Sand for Rootzone Mixtures

by

V. M. Puri¹ and C.F. Mancino²
B. Mittal¹ and D. Petrunak²

¹Department of Agricultural and Biological Engineering

²Department of Agronomy

The Pennsylvania State University

University Park, PA.

OVERVIEW OF PRESENTATION

- 1. Introduction
- 2. Objectives
- 3. Design of Experiments
- 4. Cubical Triaxial Tester
- 5. Results
- 6. Summary
- 7. Timeline

INTRODUCTION

- Appropriate particle size distribution and mechanical properties are important for preparing putting green sands.
- Sand size, shape and moisture content are key factors in determining the mechanical properties of a rootzone mixture.
- A precursor study using monosize and binary sand mixtures demonstrated the usefulness of PSU's fundamental tester, i.e., cubical triaxial tester.
- No systematic study has been undertaken on USGA sand rootzone mixtures using a fundamental tester.

OBJECTIVES

- 1. To determine the mechanical behavior of four rootzone sands (having different shapes) with and without peat under air-dried conditions.
- 2. Repetition of objective 1 under –30 cm tension soil moisture conditions.

DESIGN OF EXPERIMENTS

Sand Shape	Condition	Total Tests	
Round	v_{s}		
Nound	Dry with peat	9	
	Wet with peat	9	
Angulan	Dec.		
Angular	Dry with peat	9	
	Wet with peat	9	
Sub-angular	90 President 10 W		
	Wet	9	
	Dry with peat	9	
	Wet with peat	9	
Sub-round	1)07		
	Wet	9	
	Dry with peat	peat 9	
	Wet with peat	9	
Te	144		
Ph. High Compage		61.)	

EXPLODED VIEW OF ONE SIDE OF CUBICAL TRIAXIAL TESTER

CUBICAL TRIAXIAL TESTER (CTT)

PROJECT HIGHLIGHTS

- Test Materials:
 - Sixteen different rootzone mixtures (with varying quantities of moisture and peat contents)
- Test Apparatus:
 - Medium pressure Cubical Triaxial Tester (CTT)
- Parameters Determined:
 - Shear modulus
 - Failure profile
 - Failure strength
 - Compression profile
 - Bulk modulus

Comparison of average bulk modulus values for all sands

TYPICAL VALUES

Sand	IBD (g/cc)	BM (psi) (at 50 psi)	SM (psi) (at 10 psi)	FS (psi) (at 5.5 psi CP)
्रिक्षां ((गानः))	177	319112	j <i>02</i> 1	idet man
्रि रे क्श्यानार्वम् (४५४८-४५)	16	37/10	11/2	#5j
%.(elheine(:	171 374	- 7/	9/1	- /j:)
Angular (Dry)	1.6	3492	133	19
Angular (Wet)	1.2	2610	93	20
% Change	- 21 (DRY → WET)	-25	-30	+9

IBD = Initial bulk density, BM = Bulk modulus, SM = Shear modulus, FS = Failure stress

SUMMARY OBSERVATIONS FROM TEST RESULTS

- Dry samples had higher initial bulk density compared to the wet samples.
- A linear increase in bulk modulus was observed with isotropic pressure.
- Wet sand samples have greater volumetric strain compared to dry samples at any given isotropic pressure.
- Shear modulus values of wet samples were lower than the dry samples.
- The dry samples exhibited a brittle-type behavior whereas the wet samples exhibited a ductile-type response.

OVERALL SUMMARY

- Data collection -- Completed six out of sixteen sands (~ 40%).
- Presentation -- 2000 International ASAE Annual Conference, Milwaukee, WI.
- Technical Paper -- Mittal, B., V. M. Puri and C. F. Mancino. 2000. Measurement of bulk mechanical properties of sand for rootzone mixtures at different moisture contents. ASAE Paper No. 00-4011. ASAE, St. Joseph, MI.

TIMELINE FOR FUTURE ACTIVITIES

Task	Deadline Dates
First phase (without peat)	
Finish triaxial testing on sub-angular sand (moist)	09/20/2000
Finish triaxial testing on sub-round sand (moist)	09/27/2000
Second phase (with peat)	
Finish triaxial testing on round sand (dry)	10/06/2000
Finish triaxial testing on angular sand (dry)	10/13/2000
Finish triaxial testing on round sand (moist)	10/20/2000
Finish triaxial testing on angular sand (moist)	11/04/2000
Finish triaxial testing on sub-angular sand (dry)	11/14/2000
Finish triaxial testing on sub-round sand (dry)	11/30/2000
Finish triaxial testing on sub-angular sand (moist)	12/09/2000
Finish triaxial testing on sub-round sand (moist)	12/15/2000
Final report for CTT results	12/27/2000